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Abstract: We propose a histogram clustering (HC) method to accelerate fluorescence lifetime
imaging (FLIM) analysis in pixel-wise and global fitting modes. The proposed method’s principle
was demonstrated, and the combinations of HC with traditional FLIM analysis were explained.
We assessed HC methods with both simulated and experimental datasets. The results reveal that
HC not only increases analysis speed (up to 106 times) but also enhances lifetime estimation
accuracy. Fast lifetime analysis strategies were suggested with execution times around or below
30 µs per histograms on MATLAB R2016a, 64-bit with the Intel Celeron CPU (2950M @ 2GHz).
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1. Introduction

Fluorescence lifetime imaging (FLIM) [1] is a crucial technique for assessing microenvironments
of fluorophores, such as pH, Ca2+, O2, viscosity, or temperature [2–5]. Combining with Förster
Resonance Energy Transfer (FRET) techniques [6], FLIM can be a powerful "quantum ruler" to
measure protein conformations and interactions [7]. In contrast to fluorescence intensity imaging,
FLIM is independent of fluorescence intensities and fluorophore concentrations, making FLIM a
robust quantitative imaging technique for life sciences applications [8,9], medical diagnosis [10],
drug developments [11,12], and flow diagnosis [13–15].

A fluorescence decay is usually modeled as a sum of exponential decay functions:

f (t) = A
P∑︂

p=1
qp exp(−t/τp),

P∑︂
p=1

qp = 1, (1)

where A is the amplitude, qp and τp are the fraction and lifetime of the pth component, p = 1, . . . , P.
In vector forms, q = [q1, . . . , qP]

T and τ = [τ1, . . . , τP]T . In reality, the measured signal is a
convolution of f (t) and the instrument response function (IRF) irf (t),

h(t) = irf (t) ∗ f (t) + ϵ(t), (2)

where ϵ(t) is noise.
FLIM analysis is equivalent to solving the inverse problem from Eq. (2) with the measured

h(t) to obtain q and τ. FLIM experiments can be conducted either in time- or frequency-domain
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manners [8]. In time-domain approaches, samples are illuminated with ultrashort laser pulses.
h(t) is measured using a time-correlated single-photon counting (TCSPC) system [16,17] with
photomultiplier tubes, delay line anode detectors [18] or single-photon avalanche diodes [19] in
scanning or widefield modes. h(t) can also be measured with time-gated cameras [20,21] and
streak cameras [22,23]. There are also frequency-domain approaches [24,25], but we will focus
on time-domain approaches in this report.

A fluorescence decay histogram measured by a TCSPC system can be:

hm =

m∑︂
k=0

irfk−m · fm + ϵm, (3)

where

irfm =
∫ (m+1)∆t

m∆t
irf (t)dt, fm =

∫ (m+1)∆t

m∆t
f (t)dt, m = 0, . . . , M − 1. (4)

M is the number of time-bins, and ∆t is the bin width (the TCSPC’s temporal resolution). We
can express Eq. (3) in a vector form with h = [h0, . . . , hM−1]

T , irf = [irf0, . . . , irfM−1]
T , and

f = [f0, . . . , fM−1]
T .

With h and irf already measured, A, q and τ can be extracted with a lifetime determination
algorithm by solving a nonlinear minimization problem arg min ∥h− ĥ∥2, where ĥ is the estimated
histogram. The iterative convolution (IC) is commonly used with the least-squared method
(LSM) [26,27] for solving the inverse problem, denoted as IC-LSM. Still, IC-LSM suffers from
low photon efficiency and slow analysis. Several deconvolution approaches have been developed
to enhance the analysis, such as the Laguerre expansion [28–30], the non-fitting and the global
fitting [31,32] methods. The Laguerre expansion methods speed up deconvolution procedures
by converting the nonlinear-fitting problem to a linear-fitting problem estimating a Laguerre
basis set’s expansion coefficients. The non-fitting methods, including the centre-of-mass method
(CMM) [33–35], the integral extraction method (IEM) [36,37], the phasor method [38,39], or the
rapid lifetime determination method [40,41], can provide rapid average lifetime analysis [42].
The global fitting methods can accelerate analysis by changing the estimation mode from the
pixel-wise mode to a global fitting mode and using spatial lifetime invariances of fluorescent
species in an image to reduce the degree of freedom significantly. There are two strategies, IC
[31] and the variable projection (VP) method [32], for implementing global fitting.

However, the Laguerre expansion, the non-fitting and the global fitting methods are not fast
enough for growing demands for real-time FLIM. This work presents a histogram clustering
(HC) method for improving FLIM analysis in analysis speed and accuracy. Section 2 (Methods)
summarizes the workflows for decay parameter image reconstructions with and without HC. We
will then introduce and demonstrate the HC method. Besides the algorithms used in this work,
HC can also accelerate other algorithms, such as the maximum likelihood method [43], Bayesian
methods [44], and deep-learning methods [45]. In Section 3 (Results and Analysis), synthetic
and experimental TCSPC datasets will be used to evaluate the HC method’s performances.
Suggestions of the fastest algorithms for different outcomes will be given.

2. Methods

2.1. Modes for decay parameter image reconstructions

Figure 1(a) shows the Pixel-Wise (PW) mode’s workflow. Nvp is the number of valid pixels
in a TCSPC dataset whose intensities are beyond a threshold. Histogram s, denoted as h(s), is
sent into an algorithm for PW along with irf , s = 1, . . . , Nvp. After Nvp histograms are analyzed
pixel-by-pixel, decay parameter images are produced. The total execution time tPW

exe = Nvp × tPW
A ,

tPW
A is the adopted algorithm’s execution time for PW.
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Fig. 1. Flow diagrams of (a) the pixel-wise (PW) mode and (b) the global fitting mode for
all pixels (GF-P).

Figure 1(b) shows the workflow of the Global Fitting mode for all Pixels, denoted as GF-P.
Instead of estimating decay parameters individually for each pixel, GF-P assumes lifetimes τ
are constants, and A and q vary across the image. tGF−P

exe = tGF
A . tGF

A is the adopted algorithm’s
execution time for GF.

Figure 2 shows the workflows where the HC method is embedded. Figure 2(a) shows the
Cluster-Wise (CW) mode, which combines PW and HC; likewise, Fig. 2(b) shows the Global
Fitting mode for all Clusters (GF-C), which combines GF-P and HC.

Fig. 2. Flow diagrams of (a) the cluster-wise mode (CW) and (b) the global fitting mode for
all clusters (GF-C).

In CW, Nvp histograms are first sorted by HC, whose execution time is tHC, into Nc classes with
Nc cluster-histograms h̄(s), s = 1, . . . , Nc. h̄(s) is used to estimate decay parameters for Cluster s.
Then, the decay parameters are assigned to the corresponding cluster’s pixels with a parameter
assignment function, whose execution time is tPA. Therefore, tCW

exe = tHC + Nc × tPW
A + tPA.

In GF-C, Nvp histograms are processed with HC first, and the output Nc histograms are sent into
an algorithm for GF. Decay parameters for all clusters are obtained and assigned to the pixels in
corresponding clusters with the parameter assignment function. Therefore, tGF−C

exe = tHC + tGF
A + tPA.
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The algorithms used in this work are reviewed in Supplement 1.

2.2. Histogram clustering

In reality, there are always many pixels within the field of view showing similar histogram
profiles, and it’s unnecessary to analyze them individually because it would be time-consuming.
The idea of HC is to sort histograms with similar profiles and to divide them into Nc clusters.
If histograms have similar decay profiles, they are supposed to show similar decay parameters.
Therefore, we can average similar decay profiles in a cluster into one profile to estimate decay
parameters and then assign them to all pixels. With this arrangement, we only need to process Nc
instead of Nvp histograms. HC significantly speedups FLIM analysis.

For simplicity, we only discuss bi-exponential decays widely used in practice. Figure 3(a)
shows an IRF and normalized signal profiles h(t) following a bi-exponential decay model, and
Fig. 3(b) shows corresponding cumulative signals, H(t) =

∫ t
0 h(t)dt, which is not sensitive to

Poisson noise due to the integration. Signal decay parameters are also labelled in Fig. 3(a). If we
choose an intensity bound, Ibound, then each signal has a corresponding time delay, tIb, to reach
Ibound, as shown in Fig. 3(b).

Fig. 3. Illustrations of (a) an IRF and normalized signal profiles h(t) following a bi-
exponential decay model and (b) cumulative signal profiles H(t).

It is straightforward for mono-exponential decays, f (t) = A exp (−t/τ), that tIb has an approxi-
mately linear relationship with τ. Figure 4 shows tIb curves with different IRFs which introduce
time-shifts (assuming that IRFs for all histograms are the same in a scanning system). If a
multichannel sensor is used, IRF alignments are required before using HC.

Fig. 4. tIb of signals following mono-exponential models depending on τ under different
irf (t).

However, it is less straightforward for bi-exponential decays. Thus, we used numerical methods
to conduct analysis, as shown in Fig. 5, in which three cases were simulated to explain how the

https://doi.org/10.6084/m9.figshare.14748114
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proposed concept works. Case A has q1 = 0.5, 0.1 ≤ τ1 ≤ 3 ns, and τ2 = 3 ns as shown in Fig.
5(a); Case B has 0 ≤ q1 ≤ 1, τ1 = 0.5 ns, and τ2 = 3 ns as shown in Fig. 5(b); Case C has q1
= 0.5, τ1 = 0.5 ns, and 0.5 ≤ τ2 ≤ 10 ns as shown in Fig. 5(c). The IRF follows a Gaussian
distribution with an FWHM of 0.5 ns.

Fig. 5. tIb for (a) Case A: q1 = 0.5, τ1 = 0.1 ∼ 3 ns, and τ2 = 3 ns, (b) Case B: q1 = 0 ∼ 1,
τ1 = 0.5 ns, and τ2 = 3 ns, (c) Case C: q1 = 0.5, τ1 = 0.5 ns, and 0.5 ≤ τ2 ≤ 10 ns with
different Ibound .

For Case A, tIb is not monotonic with τ1, and the monotonic range and the slope are functions
of Ibound. As Ibound increases, the slope increases with a smaller monotonic range. The profiles
with τ1 outside the range are wrongly sorted into a cluster with a larger τ1. The monotonic
ranges for Ibound = 0.2 and 0.6 are 0.4 ∼ 3 ns and 1 ∼ 3 ns, respectively. For Cases B and C,
tIb is monotonic (decreasing and increasing) with q1 and τ2 for all Ibound, respectively. For the
signals like Cases A ∼ C (which only have one variable), we can cluster the signals by tIb with a
proper Ibound considering the monotonic range. For example, for Case A, if the shortest lifetime
is around 0.5 ns, Ibound = 0.2 is a proper choice; for Cases B and C, Ibound can be set arbitrarily in
0.1 ∼ 1. We use Ibound = 0.2 hereafter.

However, it is not realistic that the signals in a dataset have one variable and two constant decay
parameters. For instance, in FRET-FLIM applications, donors without FRET have a constant
lifetime and donors interacting with acceptors have shorter lifetimes due to FRET. Therefore, the
short and long lifetimes, τ1 and τ2, are donors’ lifetimes with and without FRET, and q1 is the
portion of the donors undergoing FRET among all donors. q1 and τ1 are variables depending on
FRET efficiency.

For FRET-FLIM datasets, such as Case D: q1 = 0 ∼ 1, τ1 = 0.5 ∼ 3 ns, and τ2 = 3 ns, with two
variables, it is not enough to divide the histograms only depending on tIb, as histograms with
different profiles would have the same tIb and be wrongly divided into one cluster. Figure 6(a)
shows the resulting clusters ( N1 = 15) in different colors for Case D with M = 256 depending on
tIb. Figures 6(b) and (c) show the cumulative signals in Clusters 14 and 7 in red, respectively, and
the averaged cumulative histograms H̄ for the clusters (green dash lines). When q1 ∼ 0 (or q1 ∼ 1)
or τ1 ∼ τ2 (such as Clusters 14 and 15), the signals are nearly mono-exponential and have similar
profiles, as shown in Fig. 6(b). However, the signals for other clusters (for example, Cluster 7)
have the same tIb, but the profiles after tIb diverge. At t = tbound in Fig. 6(c), the cumulative
intensity Itb in Cluster 7 is within [0.7, 0.9]. Therefore, we can further divide each cluster into N2
sub-clusters depending on Itb.

Setting a larger N2 can result in a higher clustering precision, which means histogram profiles
in one cluster are more similar. Another way to increase clustering precision is interpolating h
with M time-bins to hinterp with M · Ninterp time-bins. Ninterp (≥ 1) is an interpolation factor, and
hinterp can be expressed as

hinterp
mNinterp+n = hm/Ninterp, n = 0, . . . , Ninterp − 1, m = 0, . . . , M − 1. (5)
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Fig. 6. For Case D with M = 256, (a) clusters, cumulative signals (red solid lines) and
averaged cumulative signals (green dash lines) for (b) Cluster 14 and (c) Cluster 7.

Figure 7(a) shows the clusters for Case A with M = 256, Ninterp = 1, and N1 = 6. Figure 7(b)
shows the clusters for M = 256, Ninterp = 2, and N1 = 11. The histograms in each cluster have a
smaller range of τ1, leading to a higher clustering precision.

Fig. 7. For Case A, clusters with (a) M = 256 and Ninterp = 1 and (b) M = 256 and Ninterp =
2.

The HC workflow is summarized in Fig. 8(a). There are three steps: 1) depending on tIb, Nvp
histograms are divided into N1 clusters, which can be adjusted by setting Ninterp; 2) depending on
Itb, histograms in each of the N1 clusters are further divided into N2 sub-clusters, and Nc = N1×N2
clusters are finally produced; 3) Nc histograms are generated by obtaining the averaged histogram
in each cluster.

Fig. 8. (a) Workflow of the HC method. (b) Boxplot of χ2 for Case D with different Ninterp
and N2.
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To assess HC in terms of Ninterp and N2, we can define:

χ2(s) =
1
M

M−1∑︂
m=0

|︁|︁|︁h(s)m − h̄(s)m

|︁|︁|︁2/h(s)m , (6)

where h̄(s)m is the cluster histogram produced with HC for the cluster including Pixel s. Figure
8(b) shows the boxplot of χ2(s) for Case D for various combinations of Ninterp and N2. Poisson
noise is included in each signal with a total intensity of I = 104 photon counts. The higher Ninterp
and N2 are, the lower χ2(s) becomes, meaning higher accuracy. We set Ninterp = 2 and N2 = 4 for
HC used in CW and GF-C modes in this work.

3. Results and analysis

Synthetic and experimental TCSPC datasets were used to assess the performances of HC. Table 1
summarizes different output types of algorithms: (1) the fitting method LE-LSM in PW and CW
modes can produce q, τ, τA, and τI images; (2) the non-fitting methods LE-IEM and CMM in
PW and CW modes can produce τA and τI images; (3) the global fitting methods IC and VP in
GF-P and GF-C modes can produce q, τA, and τI images and constant τ. τA and τI are two types
of average lifetimes, amplitude- and intensity-weighted average lifetimes,

τA =

P∑︂
p=1

qpτp, τI =
P∑︂

p=1
qpτ

2
p /

P∑︂
p=1

qpτp. (7)

Using IEM to calculate τA requires conducting the deconvolution first. The Laguerre expansion
method is employed for deconvolution when IEM is used; therefore, we denote the whole process
as LE-IEM.

Table 1. Outputs of algorithms for different modes.

Mode Algorithm Output variablesa

q τ τI τA

Pixel-Wise (PW)/Cluster-Wise (CW)

Least-Squared Method
with Laguerre

Expansion LE-LSM I I I I
Integral Extraction

Method with Laguerre
Expansion LE-IEM X X X I

Centre-of-Mass Method CMM X X I X

Global-Fitting for all Pixels
(GF-P)/Global-Fitting for all Clusters (GF-C)

Iterative Convolution IC I C I I

Variable Projection VP I C I I

aLetters I and C represent that the outputs are images and constants, respectively.
Letter X stands for no output.

3.1. Simulated data

The synthetic TCSPC dataset has an image size of 150 × 150 pixels and M = 256. The simulated
signals are bi-exponential (P = 2). Figure 9(a) shows the log10(Ii) image consisting of three
regions with integrated intensities of I1 = 500, I2 =1000, and I3 = 10000, respectively. Possion
noise is included in the dataset. Figures 9(b), 9(c), and 9(d) shows the q1, τ1, and τ2 images,
respectively. The q1 image has three regions with mean values of [0.2, 0.5, 0.8] and relative
standard deviations of 10%; the τ1 image has two regions with mean values of [0.5, 1] ns and
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Fig. 9. (a) log10(Ii), (b) q1, (c) τ1, and (d) τ2 images of the synthetic TCSPC dataset.

relative standard deviations of 10%; the τ2 image has a mean value of 3 ns and a relative standard
deviation of 10%.

The execution times (texe) and the mean squared errors (MSE) of the results evaluated by
different algorithms without and with HC are summarized in Table 2. MSE is defined as:

MSE =
Nvp∑︂
s=1

|︁|︁|︁a(s) − â(s)
|︁|︁|︁2 /Nvp, (8)

where â represents the estimated a (a = q1, τ1, τ2, τA, τI). The results for the fitting and non-fitting
methods in PW and CW modes and the global fitting methods in GF-P and GF-C modes are
illustrated and analyzed in the following sections.

Table 2. texe and MSE evaluated by algorithms without and with HC.

Mode Algorithm texe (s)
MSE

q1 τ1 (ns2) τ2 (ns2) τA (ns2) τI (ns2)

Without HC

PW
LE-LSM 389.45 0.019 0.173 0.198 0.110 0.027

LE-IEM 62.30 X X X 0.102 X

CMM 0.20 X X X X 0.185

GF-P
IC 724.82 0.100 X X 0.678 1.098

VP 3.34 0.033 X X 0.122 0.178

With HC

CW
LE-LSM 3.36 0.011 0.102 0.104 0.037 0.025

LE-IEM 0.63 X X X 0.038 X

CMM 0.20 X X X X 0.180

GF-C
IC 11.85 0.017 X X 0.102 0.050

VP 0.31 0.014 X X 0.048 0.093

3.1.1. Fitting method LE-LSM in PW and CW modes

Figure 10 shows q̂1, τ̂1, τ̂2, τ̂A, and τ̂I images estimated with LE-LSM in (a1) – (a5) PW (without
HC) and (b1) – (b5) CW (with HC) modes, respectively. The pixel brightness of each image
represents the intensity. The parameter histograms (q̂1, τ̂1, τ̂2, τ̂A, and τ̂I) of different intensity
regions (blue, red, and magenta lines for I1, I2, and I3 respectively) and the true histogram (black
dash line) are attached to each image. HC improves the estimated images, especially for Regions
I1 and I2, as the histograms are closer to the truth than those estimated without HC. MSEs are
reduced from 0.019 to 0.011 for q1, from 0.173 ns2 to 0.102 ns2 for τ1, from 0.198 ns2 to 0.104
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ns2 for τ2, from 0.110 ns2 to 0.037 ns2 for τA, and from 0.027 ns2 to 0.025 ns2 for τI . texe is
significantly reduced from 389.45 s to 3.36 s.

Fig. 10. q̂1, τ̂1, τ̂2, τ̂A, and τ̂I images with LE-LSM in (a1) – (a5) PW (without HC) and
(b1) – (b5) CW (with HC) modes. Histograms of different intensity regions (blue, red, and
magenta for I1, I2, and I3, respectively) and the true histogram (black dash line).

3.1.2. Non-fitting methods LE-IEM and CMM in PW and CW modes

Figure 11 shows τ̂A and τ̂I images and histograms produced by LE-IEM and CMM (a) – (b)
without and (c) – (d) with HC. LE-IEM is for estimating τ̂A. MSE(τA) is improved from 0.102
ns2 to 0.038 ns2, and texe is reduced from 62.30 s to 0.63 s with HC.

Fig. 11. τ̂A and τ̂I images and histograms produced by LE-IEM and CMM (a) – (b) without
and (c) – (d) with HC.

CMM is for estimating τ̂I with the shortest texe either in PW or CW, around 0.20 s, but it has a
bias, as shown in Figs. 11(b) and 11(d). MSE(τI) is around 0.180 ns2. There is a way to correct
the bias, as described in [46].

3.1.3. Global fitting methods IC and VP in GF-P and GF-C modes

Figure 12 shows q̂1, τ̂A, and τ̂I images estimated with (a1) – (a3) IC and (a4) – (a6) VP in GF-P
(without HC) mode and with (b1) – (b3) IC and (b4) – (b6) VP in GF-C (with HC) mode. The
estimated constants (τ̂1, τ̂2) are labelled in corresponding q̂1 images. The estimations of q1 in
Region I1 with IC in GF-P are mostly inaccurate, as shown in Fig. 12(a1) and (τ̂1, τ̂2) = (0.59,
2.74) ns. As a result, τ̂A and τ̂I are also not correct in Region I1, as shown in Figs. 12(a2) and
(a3). In GF-C, IC performs better with a successfully estimated Region I1, a significantly reduced
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texe from 724.82 s to 11.85 s, and a reduced MSE(q1) from 0.100 to 0.017, a reduced MSE(τA)
from 0.678 to 0.102, and a reduced MSE(τI) from 1.098 to 0.050, as shown in Figs. 12(b1) - (b3).

Fig. 12. q̂1, τ̂A, and τ̂I images and histograms with (a1) – (a3) IC and (a4) – (a6) VP in
GF-P mode and with (b1) – (b3) IC and (b4) – (b6) VP in GF-C mode. Constants (τ̂1, τ̂2)
are labelled in corresponding q̂1 images.

HC also accelerates VP from 3.34 s to 0.31 s with a reduced MSE(q1) from 0.033 to 0.014, a
reduced MSE(τA) from 0.122 to 0.048, and a reduced MSE(τI) from 0.178 to 0.093, as shown in
Figs. 12(b4) – (b6).

Although VP has some invalid estimations with q̂1 < 0 (pixels in white) when q1 is small, as
shown in Figs. 12(a4) and (b4), its τ̂A and τ̂I images are accurately evaluated without invalid
pixels, as shown in Figs. 12(a5), (a6), (b5), and (b6). Thus, VP in GF-C is a promising choice
for fast average lifetime estimations for its short execution time (texe = 0.31 s).

In conclusion, HC not only accelerates analysis but also enhances accuracy (MSE). HC
sorts histograms with similar profiles into a cluster and takes the average of histograms for
lifetime determination, equivalent to increasing the number of photon counts and reducing
noise. Therefore, the decay parameters estimated with the average cluster histogram by lifetime
determination algorithms have higher accuracy than those of individual histograms. Although
the decay parameters of the histograms in one cluster have a deviation from those estimated with
the average cluster histogram, the results indicate that the error introduced by HC is smaller than
that introduced by processing original histograms with a relatively lower photon count.

3.2. Experimental data

Mouse raw macrophage cells were routinely cultured in DMEM (Dulbecco’s Modified Eagle
Medium) supplemented with 10% FCS (Fetal Calf Serum) under 5% CO2 at 37oC. Cells were
seeded on glass cover slips in 24-well plates and cultured overnight for bacterial infection.
Bacteria engineered to express GFP (Green Fluorescent Protein) were harvested from an early
exponential phase and added to the cells with an MOI (Multiplicity of Infection) = 100. Cells
were washed with PBS (Phosphate-Buffered Saline) and stained for actin with phalloidin Alexa
Flour 546 (Thermo Fisher Scientific). The scanning FLIM used in this work is LSM510 (Carl
Zeiss), equipped with a TCSPC module (SPC-830, Becker & Hickl GmbH). The sample was
excited by a tunable femtosecond Ti: Sapphire laser (Chameleon, Coherent) at 850 nm as a
two-photon excitation source. The repetition rate is 80 MHz, and the pulse width is less than 200
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fs. The emitted photons were collected through a 63× water-immersion objective lens (N.A. =
1.0) and a 500 ∼ 550 nm bandpass filter and transferred into a photomultiplier tube.

Figure 13 shows the intensity image and texe for all algorithms without or with HC for a TCSPC
dataset. The estimations of three output types are shown as follows.

Fig. 13. Intensity image and texe for all algorithms without and with HC.

3.2.1. Type 1: q̂1, τ̂1, and τ̂2 images with LE-LSM in PW and CW modes

Figure 14 shows (a) q̂1, (b) τ̂1, and (c) τ̂2 images with LE-LSM in PW, (d) - (f) the results with
LE-LSM in CW, and the histograms of (g) q̂1, (h) τ̂1, and (i) τ̂2 in PW (blue) and CW (red) modes.
LE-LSM shows similar lifetime estimation performances in PW and CW, whereas LE-LSM in
CW (texe = 5.87 s) is faster than LE-LSM in PW (texe = 632.32 s). Therefore, LE-LSM used in
CW is a better choice for Type 1.

Fig. 14. q̂1, τ̂1, and τ̂2 images from LE-LSM (a) - (c) without and (d) – (f) with HC.
Histograms of (g) q̂1, (h) τ̂1, and (i) τ̂2 in PW (blue) and CW (red) modes.

3.2.2. Type 2: q̂1 image and constants (τ̂1, τ̂2) with IC and VP in GF-P and GF-C modes

Figure 15 shows q̂1 images with (a) IC and (b) VP in GF-P, (c) IC and (d) VP in GF-C. Figure
15(e) shows histograms of q̂1 with IC (dash blue) and VP (dash red) in GF-P and IC (solid blue)
and VP (solid red) in GF-C. The constants (τ̂1, τ̂2) of each approach are attached in q̂1 images.

3.2.3. Type 3: τ̂A and τ̂I images

Figure 16 shows τ̂A images (a) – (d) without and (e) – (h) with HC. Figure 16(i) shows the
histograms of τ̂A with LE-LSM and LE-IEM in PW and CW. Figure 16(j) shows the histograms
of τ̂A with IC and VP in GF-P and GF-C. Figure 17 shows τ̂I images (a) – (d) without and (e) –
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Fig. 15. q̂1 images from IC and VP (a) – (b) without and (c) – (d) with HC. (e) Histograms
of q̂1 with IC (dash blue) and VP (dash red) in GF-P and IC (solid blue) and VP (solid red)
in GF-C.

(h) with HC. Figure 17(i) shows the histograms of τ̂I with LE-LSM and CMM in PW and CW.
Figure 17(j) shows the histograms of τ̂I with IC and VP in GF-P and GF-C.

Fig. 16. τ̂A images from the algorithms (a) – (d) without and (e) – (h) with HC. (i)
Histograms of τ̂A with LE-LSM and LE-IEM in PW and CW. (j) histograms of τ̂A with IC
and VP in GF-P and GF-C.

Like the conclusions drawn from simulations, LE-LSM in CW is the fastest for Type 1 with
texe = 5.87 s; VP in GF-C is the fastest for Type 2 with texe = 0.41 s. For average lifetime images,
VP in GF-C is the fastest for both τA and τI with texe = 0.41 s, LE-IEM in CW is the second one
for τA with texe = 0.94 s; meanwhile, CMM in CW is the fastest for τI with texe = 0.20 s.
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Fig. 17. τ̂I images from the algorithms (a) – (d) without and (e) – (h) with HC. (i) Histograms
of τ̂I with LE-LSM and CMM in PW and CW. (j) histograms of τ̂I with IC and VP in GF-P
and GF-C.

4. Conclusion

We developed a histogram clustering (HC) method to accelerate FLIM analysis. HC can improve
both the speed and the accuracy for FLIM analysis by sorting histograms with similar profiles in
a dataset into several clusters and significantly reducing the number of histograms to be analyzed.
The HC method implements clustering with two features of a histogram. Several commonly used
lifetime determination algorithms’ performances for producing decay parameter images without
and with HC were compared using synthetic and experimental datasets. For different output
types, the fastest FLIM analysis methods are suggested: 1) LE-LSM with HC for all lifetime
component images with an execution time (texe) of 5.87 s, 106-fold shorter than texe without HC;
2) VP with HC for constant lifetimes, q1, τA, and τI images with texe = 0.41 s, 32-fold shorter
than texe without HC; 3) LE-IEM with HC as the second choice for τA with texe = 0.94 s, 78-fold
shorter than texe without HC, and CMM as the second choice for τI with texe = 0.2 s without or
with HC (biased if the largest lifetime > T/4). The analysis was conducted in Matlab, and it can
be translated to C or other environments to speed up the analysis. We believe the proposed HC
method can benefit applications demanding real-time FLIM such as clinical diagnosis and fast
screening.
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